

Home office and mobility tool ownership: SP design and modeling ideas

D. Heimgartner & K. W. Axhausen 15th workshop on discrete choice models Sample selection, endogenous choice and path analysis - three perspectives on conditional probabilities in DCM

The home office SP

						English 🗸	
Work arrangement choice							
	А			в			
Co-ordinated presence	Free choice of the days			Coordinated (Monday and/or Friday)			
Core hours	None			Regular working hours			
Help-desk and training	Yes			No			
Adjustment hourly wage	No salary adjustment			+10%			
Additional costs (e.g., heating, electricity)	50% participation			No contribution			
Hardware budget	No contribution			50% of the necessary expenses			
Work from anywhere	Not allowed			Allowed			
Desk sharing	No			Yes			
Your choice:	•			0			
Home office frequency	choice						
	0 days	1 day	2 days	3 days	4 days	5+ days	
under work arrangement A	0	0	•	0	0	0	
under work arrangement B	0	0	0	۰	0	0	
						→	

1. conditional probability

Conditional on being in the sampled population

- Sample population = home office population
- Question of interest: Predicting for a new individual 1. has this individual home office access 2. if so, what is the preferred home office frequency?
- => Heckman-selection type model

$$\begin{split} E[y^{O}|\mathbf{x}^{O} = \mathbf{x}_{\mathbf{i}}^{O}, \mathbf{x}^{S} = \mathbf{x}_{\mathbf{i}}^{S}, \underbrace{y^{S} = 1}_{1. \text{ conditional probability}}] = \beta^{O'} \mathbf{x}_{\mathbf{i}}^{O} + \underbrace{E[\varepsilon^{O}|\varepsilon^{S} \ge -\beta^{S'} \mathbf{x}_{\mathbf{i}}^{S}]}_{\text{biased results if } \neq 0, \ \varrho \neq 0} \\ \begin{pmatrix} \varepsilon^{S} \\ \varepsilon^{O} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \varrho \\ \varrho & \sigma^{2} \end{pmatrix} \right) \end{split}$$

- Usually assumed that errors follow bivariate normal distribution.
- => ε^{O} is logistically distributed!

2. conditional probability

Conditional on considering the alternative

Manski's theoretical framework

- The sum runs on every possible subset C_m of the universal choice set C
- Usually a high combinatorial problem
- => Home Office choice set |C| = 6: $\{0\}, \{0, 1\}, \dots, \{0, \dots, 5\}$
 - Or is it realistic to have $C_m = \{1, 5\}$?
 - Latent home office feasibility (among others) determines $P_n(C_m)$

Alternative perspective: Latent class model with S = 5 classes, each class *s* having a deterministic choice set C_s (and no class-specific parameters). $Pn(C_m)$ is the class-allocation model.

3. conditional probability

The mobility tool ownership SP

Experiment	
Please choose your preferred bundle of mobility tools presented below.	based on the home office situation
For your information:	
The home office situation applies to all your subsequent choices on	this page.
Do not deselect a mobility tool simply because you do not like any o	f the three proposed alternatives.
Home office situation	
Number of days you work from home	2 days

Conditional on having made a previous choice

Category => alternative

• Heckman perspective:

- Multivariate probit as selection model
- Car SP is only observed if car category has been selected
- Manski perspective:

$$P_n(\mathbf{y}) = \sum_{C_m \subseteq C} P_n(\mathbf{y}|C_m) P_n(C_m)$$

- We make a simultaneous choice of mobility tools y but the available choice set is probabilistic
- $P_n(\mathbf{y}|C_m)$ should account for substitution patterns: E.g., e-bike and regional season card
- => Very related!

WFH => MTO

- $P(mto|\mathbf{x} = \mathbf{x}_i, wfh = wfh_i)$
- Path analysis: endogenous predictors
- If errors ε_{wfh} , ε_{mto} are correlated then the log likelihood contains joint probability
- => What if errors do not follow the same distribution? Mixture distribution

Conclusion

- Structural choice modeling
- Multiple endogenous variables (sample selection, choice set formation, previous choice) with a "path" between them (condition)
- Does the choice activate a subsequent choice? => Heckman-type selection
- Does the choice influence the subsequent choice? => Path analysis (SEM)
- Error distributions (same, different)? Errors correlated? => Joint (mixture) distributions

Questions?

ETH zürich

Swiss New Normal

Daniel Heimgartner daniel.heimgartner@ivt.baug.ethz.ch